
材料解决方案

EDM 石墨

选材表

应用

我们的 EDM 电极材料能够平衡金属去除率、电极损耗和总拥有成本。每个级别的每块 EDM 石墨性能都保持一致,也不会受使用年限的影响。专门定制适用于不同的电极应用场景,具有基准性能特征。

航空航天应用

- 叶片
- 涡轮叶片
- 封严槽

医疗应用

- 外科紧固件
- 牙种植体
- 骨科关节

消费类应用

- 瓶盖和螺纹口
- 注塑
- 电子接插件

汽车应用

- 扬声器
- 镜头
- 功率分配

电极选择的关键因素

作为日渐成熟的精密技术,EDM 已占有一席之地,该技术之所以备受青睐,是因为它能够帮助用户解决棘手问题,而不是要说明传统加工的局限性。EDM 加工技术开拓了应用领域的新天地,其中所用的石墨电极材料越来越受到重视。

虽然在加工中可通过许多方法来确定合适的材料,但我们认为有 5 个因素是决定成败与盈亏的关键。

金属去除率 (MRR)

金属去除率通常用每小时立方毫米 (mm³/hr) 或每小时立方英寸 (in³/hr) 表示,但实际上也可以仅用 \$/hr 来表示。实现高效的 MRR 不仅仅是设置正确的设备参数那么简单,还涉及到 EDM 工艺中耗散的直接能量。石墨通常比金属电极更加高效,但不同类型石墨之间的金属去除率存在很大差异。通过选择合适的电极材料 / 工件金属 / 应用组合,可最大限度提高 MRR。

耐损耗 (WR)

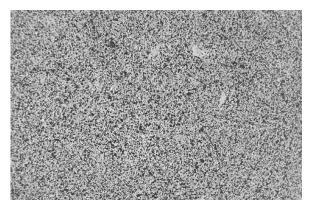
有 4 种类型的损耗:整体损耗、角部损耗、端面损耗和侧面损耗。在这 4 种损耗中,我们认为角部损耗最重要,因为电极转角和边缘的耐磨损能力决定了最终切割的轮廓。由此可见,如果电极能够在其最脆弱的位置成功抵抗损耗,那么将最大限度减少整体损耗,以及延长电极寿命。电极损耗虽无法避免,但通过选择合适的电极材料/工件金属组合,并在优化设置下进行加工,最大限度降低损耗。

电极制作和保持细节的能力与其耐磨性和可加工性直接 相关。要想最大限度减少角部损耗,需选择强度高且耐 高温的电极材料。

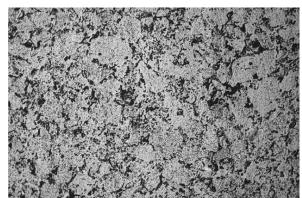
表面光洁度 (SF)

通过选择合适的电极材料、良好的冲洗条件和正确的电源设置,可获得出色的表面光洁度。高频率、低功耗和轨迹加工能够带来出色的光洁度,因为在这些条件下,工件金属上形成的凹坑较小且较为模糊。最终的表面光洁度将是电极表面的镜像,因此特微和极细颗粒的高强度石墨是电极精加工的理想选择。

可加工性


任何加工过石墨的操作人员都知道,石墨很容易切割。如果材料只是具有易加工性,这并不代表它是电极的最佳选择。材料还必须足够坚固,能够抵抗搬运和 EDM 工艺本身所造成的损坏。强度和小颗粒非常重要,这样才可能实现最小半径和严格公差。材料硬度也是影响石墨可加工性的一个因素。在加工过程中,较硬的电极材料将更容易碎裂。

材料成本


电极材料成本通常只占总 EDM 总成本的一小部分。然而,人们常常忽略的一点是,撇开总成本来谈电极材料成本毫无意义。

制作时间、切割时间、人工和电极损耗全都更多地取决于电极材料,而不是任何其他因素。因此,了解可用电极材料的属性和性能特征至关重要,因为它们会影响您要加工的工件金属。只有掌握了这些数据,才能开展成本/性能分析,从而确定 EDM 加工的真正成本。

石墨等级


我们的 5 微米 EDM 材料

竞争对手的 5 微米材料

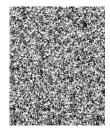
特微石墨

EDM-AF5® 石墨

EDM-AF5 是现今市场上 提供的优质石墨电极材料, 平均颗粒尺寸小于 1 微米。 该颗粒结构具有很高的强 度,可达到极佳的表面光 洁度 (7 μinR_a),并具有很

好的金属去除率和高耐磨性。

典型值


平均颗粒尺寸:	<1 µm
抗弯强度:	1,019 kg/cm² (14,500 psi)
抗压强度:	1,554 kg/cm² (22,100 psi)
硬度:	83 肖氏硬度
电阻率:	21.6 μΩm (850 μΩin)

应用

- 用于雕刻的精细电极
- 难以加工的细节
- 灵敏、易碎的电极
- 各种类型的螺纹电极
- 对表面光洁度要求很高的加工
- 复杂的模具和冲模

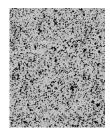
加铜极细

EDM-C3® 石墨

EDM-C3 是一种渗铜的高品质石墨,推荐用于对速度、损耗和表面光洁度要求很高的应用领域。与易碎的电极不同,许多 EDM操作人员选择该等级来弥

补操作人员的经验不足或糟糕的冲洗条件。

典型值


平均颗粒尺寸: <5 μm
抗弯强度: 1,427 kg/cm² (20,300 psi)
抗压强度: 1,993 kg/cm² (28,350 psi)
硬度: 66 肖氏硬度
电阻率: 3.2 μΩm (127 μΩin)

应用

- 对强度要求极高的精细电极
- 螺纹电极
- 航空航天应用
- 注塑模具
- 硬质合金加工
- 小孔加工

极细石墨

EDM-4® 石墨

EDM 性能特征。

EDM-4 是极细颗粒等级中的优质产品。该等级的各向同性高、强度高且硬度适中,非常适合电极加工。在金属去除率、损耗和表面光洁度方面,EDM-4 具有出色的

典型值

(500 $\mu\Omega$ in)

应用

- 对表面光洁度要求很高的 精细电极进行 EDM 加工
- 线切割电极
- 注塑模具

极细石墨

EDM-3® 石墨

EDM-3 是一种各向同性极细颗粒石墨,具有高强度与极好的耐磨性和表面光洁度特性,可轻松加工成厚度为0.1 mm 或更薄的产品。

典型值

平均颗粒尺寸: <5 μm
抗弯强度: 935 kg/cm² (13,300 psi)
抗压强度: 1,273 kg/cm² (18,100 psi)

硬度: 73 肖氏硬度

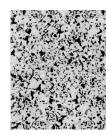
电阻率: 15.6 μΩm (615 μΩin)

应用

- 精细电极的 EDM 加工
- 冲头和冲模组
- 注塑模具
- 螺纹电极
- 用于加工航空航天金属件

EDM-2® 石墨

EDM-2 是一种各向同性极细颗粒石墨,具有高强度和良好的耐磨性。建议用于对加工速度、光洁度和耐磨性要求高的精细电极。


典型值

应用

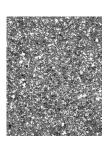
- IC 模具
- 航空航天应用
- 精细电极
- 最小锥度型腔
- 盲腔作业

超细石墨

EDM-200® 石墨

EDM-200 是一种各向同性 超细颗粒石墨,具有良好的 强度、表面光洁度和耐磨 性。EDM-200 石墨的价格 适中,并可将电极重复加工。

典型值


平均颗粒尺寸: 10 μm
抗弯强度: 635 kg/cm² (9,000 psi)
抗压强度: 1,075 kg/cm² (15,500 psi)
硬度: 68 肖氏硬度
电阻率: 14.7 μΩm (580 μΩin)

应用

- 结构性筋条
- 电极粗工或精工
- 大型模具
- 高强度大电极

加铜超细

EDM-C200® 石墨

合金的优质材料。

EDM-C200 是一种含铜的 超细石墨,具有很好的金 属去除率和良好的耐磨性。 EDM-C200 石墨可提高不 良冲洗条件下的加工稳定 性,同时也是加工航空航天

典型值

平均颗粒尺寸:	10 μm
抗弯强度:	851 kg/cm ² (12,100 psi)
抗压强度:	1,631 kg/cm ² (23,200 psi)
硬度:	62 肖氏硬度
电阻率:	2.9 μΩm (114 μΩin)

应用

- 对表面光洁度要求较高的 精细电极的 EDM 加工
- 线切割电极
- 注塑模具

技术文章

所有文章均可通过扫描二维码访问,或通过 poco.com 访问我们。

总拥有成本

总拥有成本 (TCO) 模型和分 析通常被用于评估新设备购买 的决策,但也适用于与 EDM 火花机操作相关的要素,如石 墨电极材料。将 TCO 应用于 这些要素时,其价值主张和生

产力开始对设备拥有和运行的盈利能力产生影响。

极材料选择流程的关键因素,以及使用该 方法最大限度地提高 EDM 的 工艺效率。

处理石墨粉尘

粉尘是一个家喻户晓的常用词语,通常 可定义为悬浮在空气中的各种细粉末状 物质。本文回顾了石墨粉尘的特性,并 回答了有关石墨粉尘处理的常见问题。

提高 EDM 的盈利能力

本文回顾了在加工特殊工件金属时需要 考虑的因素,并通过列举真实案例来说明 电极材料选择和 EDM 参数对盈亏底线的 影响。

电极对 EDM 光洁度的影响

本文讨论了通过新型 EDM 技术用电极材 料加工表面光洁度产生的经济影响。如需 进一步了解电极材料质量对工件光洁度的 影响,请扫描二维码访问全文。

EDM 对表面均匀性的影响

了解 EDM 工艺过程中形成的蚀变金属 层,以及 EDM 工艺参数如何影响工件光 洁度和表面均匀性。

有时不仅是石墨

说明加工铍铜、钛和钨碳合金等非标准材 料时,如何通过设置正确的机器参数来改 进 EDM 工艺。

石墨与铜的对比

查看铜与石墨电极的加工时间和材料真实 成本的比较,并了解 EDM 各项关键性能 指标之间的差异。请扫描二维码阅读全文, 并了解有关铜与石墨的更多信息。

EDM 石墨购买指南

千万不要购买描述为"相当于"或"一样好" 的 EDM 石墨,除非您资金充裕、时间充足 并拥有一支优秀的模具维修团队。掌握技 巧,了解如何能确保买到所需的石墨产品。

技术支持

如果您对(我们或其他品牌的)电极材料有疑问,请致 电 EDM 专家。我们的 EDM 技术服务人员积累了多年 的 EDM 实践经验,能够为您提供设计、加工、参数设 置或包括电极管理技术在内的几乎任何方面的帮助。

• 等级验证

• 应用专家

• 生产问题

EDM 技术手册

我们的 EDM 技术手册现已通过 <u>www.edmtechman.com</u> 在线提供,或从 iOS 或 Android 设备的应用程序上下载。

iOS 设备

Android 设备

行业领先的 EDM 培训

我们提供 EDM 技术培训计划,以帮助 EDM 操作人员提升技能。该为期三天的免费培训课程包括课堂和实验室活动,能够让参与者更好地了解如何控制 EDM 工艺以实现可预测的结果。以下是参与者可应用于车间的实用信息。

- EDM 基础知识
- 石墨的属性和特性
- EDM 火花机技术

欲知更多信息

请致电当地的经销商,了解我们的优质石墨解决方案如何帮您解决挑战。 请访问 <u>poco.entegris.com/distributors</u> 获取您附近的经销商信息。

销售条款与条件

所有采购须遵守 Poco Graphite 的"销售条款与条件"。如需查看、打印此信息,请访问 <u>poco.entegris.com/terms-and-conditions</u>。

300 Old Greenwood Road Decatur, Texas 76234 USA 客户服务

电话 +1 940 627 2121 传真 +1 940 393 8366

Entegris® 和 Entegris Rings Design® 是 Entegris, Inc. 的商标,POCO® 和其他产品名称是 Poco Graphite, Inc. 的商标,如 <u>entegris.com/trademarks</u> 上所列。所有第三方产品名称、徽标和公司名称是其各自所有者的商标或注册商标。使用它们并不意味着 Entegris 与商标所有者有任何从属、赞助关系或为其背书。 ©2010-2025 Entegris, Inc. | All rights reserved. | 6207-14257ENT-0625-cn