

# Biomanufacturing Using Single-Use Systems: Fluoropolymer Material Case Study

Julien Muzard\*, Joy Chen, Muhammad Siddiqui, Ross Acucena – Entegris

#### **ABSTRACT**

Disposable solutions are now widely accepted as the gold standard in the biopharmaceutical industry covering every single step of drug manufacturing. From early-stage small scale R&D projects, upstream production with several thousand-liter bioreactors, downstream process, API formulation up to critical fill/finish and transport applications, the industry is shifting from traditional processes to take advantage of single-use technology benefits.



# MATERIAL AND METHODS

Entegris' commercially available gamma stable, fluoropolymer film has been used to support various applications such as large-scale bioprocessing/banking of mammalian cells (intensification), bulk drug substance (BDS), cell and gene therapy (adenovirus), critical vaccinology program (mRNA-LNP/liposomes), as well as protein-based therapeutics at large, industrial scales worldwide.

# Aramus™ Fluoropolymer Bag

● Go ← Caution ← Stay ← Data not found



- No polymer additives
- No adhesives
- No catalysts
- Single layer fluoropolymer contact
- Extremely low E&L profile
- Inert
- Gamma stable
- No glass transition

#### Temperature Use Range (°C) Frozen Drop Performance υ 25% · PVDF **2**0% -**5** 15% -EVA **E** 10% -HDPE 5% -PP Single-layer fluoropolymer polyolefin **Chemical Compatibility** Film Summary Dimethyl sulfoxide (DMSO) Hydrofluoric acid Sodium citrate Polyethylene glycol

■ Go■ Caution■ Not recommended

#### **RESULTS**

Bypassing traditional biomanufacturing and disposable multilayered films

## High-Density Cell Banking







#### COVID-19 Global Response/Vaccinology

## Cell and Gene Therapy

Adeno Associated Virus (AAV) 5 Adsorption (HPLC)



#### **Protein-Based Therapeutics**

PDB ID: 1A4V







Wavelength, nm



- Aramus fluoropolymer bag demonstrates superior adsorption profile compared to regular multilayered PE films
- Seed train process has been redesigned, switching from vials and flasks to Aramus single-use fluoropolymer technology, which can be frozen and stored with the highest cell concentration and then used directly to inoculate a large-scale bioreactor
- Compared to PE material, fluoropolymer material demonstrates minimal AAV viral vector adsorption when held at room temperature for three days
- The Aramus bag assembly is a closed system, which reduces contamination risks
- No significant aggregation detected in Aramus bag after one (short-term storage) and four freeze/thaw cycles (long-term storage)
- No degradation/chemical modifications during storage in Aramus bag assembly

# **CONCLUSIONS AND PERSPECTIVES**

- Confirmation of protein/virus/cells integrity with our commercially available gamma-stable fluoropolymer
- Fluoropolymer layer is inert and smooth, has low surface energy, and has universal chemical resistance
- No impact on conformation and chemical integrity of protein at small and large scale
- Use of SPOS and DLS particle sizing technology is routine to screen and monitor aggregations
- Combine with single-use sensors and digital twin for Industry 4.0
- Used from high-density cell banking, gene therapy, to the transport of biologic/therapeutic compounds
- Validation of new applications (cell culture, other molecular scaffolds of biotechnological interest, personalized medicine)



\*Corresponding author, Julien Muzard, julien.muzard@entegris.com