

Understanding Interfacial Surface Interactions

Daniela White, Thomas Parson, Ruben Lieten, Bianzhu Fu, and Michael White

SPCC April 2019

ENTEGRIS PROPRIETARY AND CONFIDENTIAL

Challenges for W Post-CMP Cleaners

Slurry particles and organic residue removal from W and dielectric surfaces (PETEOS, Silicon Nitride, Polysilicon);

Metal residue in any form (lons, Salts, Metal Oxide)

Cleaning Requirements:

- W ER < 1 Å/min
- TiN ER < 1 Å/min
- Dielectrics ER < 1 Å/min
- Dielectrics: Si₃N₄, TEOS, SiC, etc.
- Defect counts DDC ≥ 0.065 mm lower than commodities: dAmmonia, SC-1
- Low W/TiN galvanic corrosion
- Mt atoms < 10^{10} Mt/cm²

- No increased roughness
- Market increasingly challenged by W recess
 - High pH commodities (SC1, dil NH₃)
 - Traditional low pH cleaners
- Low W etch rates (<2 Å/min) cannot be achieved with commodity cleaners
- No organic Residue
 Nitride cleaning is particularly problematic
- No silica particles or clusters
- Green chemistry (TMAH free)

Post-CMP W Cleaning Mechanisms vs. pH

W CMP residue: silica, Mt oxide, organics

Low pH

- Silica brush imprints
- Good Mt removal
 (~10¹⁰ atoms/cm²)

High pH

- No Silica brush imprints
- Poor Mt removal
 (4-6 X10¹⁰ atoms/cm²)

CA = Mt complexing agent D1 = SiO₂ dispersant D2 = organic residue dispersant

electrostatic

repulsion

steric repulsion

4

1 - Liu, et al. J. Mater. Chem A, Issue 6, 2014.

2 - "Hetero and lacunary polyoxovanadate chemistry: Synthesis, reactivity and structural aspects". Coord. Chem. Rev. 255: 2270–2280. 2011.

Higher Tungsten Etch Rates Observed

Increasing pH due to dissolution as Polyoxotungstate Keggin ions

Surface Residue PCMP Cleaning with W Slurries¹

Nanodispersion before polishing

Dispersion during/after polishing

W(0) is oxidized to W(VI)O₃ (pp) and W(VI)O₄²⁻ (s);

WO₄²⁻ (s) is adsorbed on the surface of the Fe³⁺/CPE coated, positively charged Si particles;

- WO_4^2 - precipitates @ pH < 3 as $(N^+R_4)_n(H_xW_qO_y)^n$ /silica aggregates that act as <u>additional abrasive</u> during polishing.

W CMP slurry – 15-32 ppm Fe

- Fe²⁺/CA (complexing agent) on the silica surface and in the CMP slurry at pH = 2.5;
- End of polishing, soluble Fe²⁺ complexes on the wafer surface;
- DI water rinse and high pH post-CMP
 W cleaners precipitate Fe³⁺ as insoluble
 Fe(OH)₃ on the PETEOS/SiN surface

FeOx Very difficult to remove

1 - D. White et al, Materials Research Society Symposium Proceedings (2007), 991(Advances and Challenges in Chemical Mechanical Planarization), 145-150

Improving Organic Residue Removal from Si_3N_4 Contact Angle and FTIR

Electrostatic Repulsion during CMP

Contact Angle

W Post-CMP Cleaner

Si₃N₄ surface typically highly contaminated by cationic dishing and erosion control agents

Cleaning additive removes cationic contamination from dielectric surface and disperses

Defectivity Correlated to Charge Repulsion Between Silica Particles and Various Surfaces (W, SiO₂, Si₃N₄)

White, M. L. et al, *Mater. Res. Soc. Symp. Proc.* 991, 0991-C07-02 (2007)
 Hedge, S. and Babu, *H. V. 2Eelectrochem. Soc. St. Lett.* V7, pp. 316-318 (2008)
 White , M. L. et al. *Mat. Sc. For.* 1249 E04-07 (2010).

Entegris

Additive increases negative charge on silica surface

7 | CONFIDENTIAL

PlanarClean[®] AG-WXXX Exhibits No bulk corrosion and no OCP gap between W and TiN

Post PC AG-WXXX

No Visible Etching of Tungsten

	TiN	Galvanic Corrosion	W
	Cathode		Anode
Corrosion Potential (V)	-0.622	-0.626	-0.625
Corrosion Current (A)	1.76×10^{-100}	2.35 × 10 ⁻⁰⁷	1.13 × 10 ⁻
Corrosion Rate (Å/min.)	0.167	0.013	0.642
Galvanic Corrosion (Å/min.)	0.013		

Low pH PCMP W Cleaners Further reduce metal defects after CMP

- Complexing reagents: to keep in solution soluble Fe²⁺ species
- Cleaning additives: able to eliminate silica <u>brush marks</u> at pH = 2

Force of Adhesion – AFM Measurements

$$\mathrm{d}F = k_{\mathrm{c}}\,\mathrm{d}Z_{\mathrm{c}} + \frac{\mathrm{d}F_{\mathrm{surf}}}{\mathrm{d}D}\,\mathrm{d}D = \left(k_{\mathrm{c}} - \frac{\mathrm{d}F_{\mathrm{surf}}}{\mathrm{d}D}\right)\,\mathrm{d}Z_{\mathrm{c}},$$

F = force of adhesion k_c = spring constant of the cantilever Z_c = cantilever deflection F_{surf} = distance-dependent surface force D = separation distance

 I_{PSD} = detector current signal Z_{p} = height position of the piezoelectric translator

3. Hans-Jurgen Butt, Brunero Cappella*, Michael Kappl, Surface Science Reports 59 (2005) 1–152

Example of Cleaning Performance Prediction via AFM force of adhesion measurements

Main adhesion forces:

- o Van der Waals
- o Electrostatic double layer
- Hydration repulsion
- Hydrophobic attraction

SEM Images of PETEOS Coupons

Polished with W CMP slurry and cleaned with Formulations A and B

- o Tabletop polishing
- o Colloidal silica Ludox, PS = 20-30 nm
- o pH = 2.3

Entegris

Correlation SEM vs. Calculated Adhesion Based on contact angle measurements

Correlation: W_{adh}, mJ/m² (Predicted) and Post-CMP Cleaning SEM Particles Area (Validation)

PlanarClean AG-W formulations

exhibit lower defects and organic residues over traditional cleans

PC AG-W Series show improved performance over SC-1 on all substrates

AG-W#3

AG-W#4

5

0

AG-W#1

AG-W#2

Summary

Organic contamination reduction studied by FTIR and contact angle

Work of adhesion and AFM force of adhesion show that less energy is needed to remove silica slurry particles in the presence of the cleaner

Entegris AG-W Formulations show significantly lower defects on Si3N4, TEOS and W wafers compared to commodity cleans

Entegris

Thank you!

Entegris[®], the Entegris Rings Design[®], and other product names are trademarks of Entegris, Inc. as listed on <u>entegris.com/trademarks</u>. All product names, logos, and company names are trademarks or registered trademarks of their respective owners. Use of them does not imply any affiliation, sponsorship, or endorsement by the trademark owner. ©2018 Entegris, Inc. All rights reserved.

A&Q

16 | CONFIDENTIAL

Appendix

Entegris