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ABSTRACT
—
Chemical filters to remove Airborne Molecular 

Contamination (AMC) play a pivotal role in removing 

harmful AMC and provide ultrapure air quality in SEMI 

cleanrooms, which is a key requirement for manufac-

turing high quality devices. Filters are expected to 

have long lifetime and their design optimization plays 

a central role to provide that. Predicting filter removal 

efficiency and life cycle are key design parameters. 

However, it is challenging to obtain these parameters 

experimentally, particularly at very low gas concentra-

tions, due to long test times, high experimentation 

costs and technical limitations. 

Although computational modeling is an efficient 

means to generate predictive models, long computa-

tional lead time and the inability to capture live failure 

mode engineering analysis (FMEA) leads to a bottleneck 

in solving various challenges in filter optimization.

This study is a novel effort in successfully developing 

and deploying digital twin technology for the AMC 

filter optimization process. The digital twin approach 

is a machine learning model and a virtual representa-

tion of real word entities and processes, synchronized 

at a specified frequency and fidelity. It can track the 

past, provide insights into the present and predict and 

influence future system behavior and can offer live, 

system level simulations with real data inputs. 

It also offers a unique opportunity to study virtual and 

physical system either separately or together. Moreover, 

digital twin models provide profound impacts on 

industrial product development and businesses with 

better decision-making ability through human and 

artificial intelligence by accelerating holistic under-

standing of the systems of interest. This study 

successfully developed a complete digital twin for  

air filtration system and subsequent twin model for  

a real-life filtration system. By studying the digital  

twin of AMC filters under actual working conditions, 

we explored the product in action, over time, when 

subjected to the physical environment. This deploy-

ment allowed the product development team to  

close the loop on its initial simulations.

INTRODUCTION
—
Airborne Molecular Contamination (AMC) is a critical 

issue for numerous state-of-the-art manufacturing 

processes. These contaminants pose a serious threat 

in the modern semiconductor industry where feature 

size continues to shrink. Since AMC can significantly 

damage semiconductor cleanroom environments,  

it is crucial to adopt effective means to remove AMC 

from upstream gases to maintain a high yielding 

process (J. M. Lobert, 2018) (A. Chakraborty J. L., 

2023). 

Among the different processes, adsorption and ion 

exchange systems are efficiently employed to remove 

AMC (Ruthven, 1984) (Suzuki, 1990). With the mini- 

aturization of semiconductor features to less than 

100 nm, AMC was recognized as critical sources of 

yield reduction and performance deterioration in 

semiconductor devices (D. Kinkead, 1995) (T. Ogata, 

1998) (H. Kitajima, 1997). AMC, unlike particles, is in 

the gas-phase form and has dimensions of 0.3 – 0.6 nm. 

At these dimensions, AMC easily moves through high 

performance particulate filters and negatively impacts 

yield (S.N. Li, 2007) (Saga, 2006). The effect of 

contamination on wafer surfaces only grows more 

serious as feature sizes approach the same order of 

magnitude of contaminant molecules. 

Several different removal processes have been 

employed to remove AMC, such as adsorption, ion 

exchange, and photocatalytic oxidation. However, 

AMC chemical pleated filters play a pivotal role  

in removing harmful contaminants and result in 

purified air quality in SEMI cleanrooms, which is  

a key requirement in generating quality products  

(A. Subrenat, 2003). 

To maximize filter performance while minimizing cost 

of ownership, it is desirable to optimize filter design  

to increase both removal efficiency and filter lifetime. 

This filter optimization requires an understanding of 

the relationship between design inputs and key 

outputs. However, it is challenging to obtain all the 

necessary relationships experimentally, particularly  

at very low gas concentrations, because of long test 

times, high experimental cost, and technical limita-

tions. Although computational modeling is an efficient 

means for developing predictive models, it, too, has 

long computational lead times and an inability to 

capture live failure mode engineering analysis (FMEA). 

This leads to a bottleneck in solving key challenges in 

filter optimization. Digital twins can complement all 

these issues efficiently.



3

Digital Twin Fundamentals

Digital twins are a state-of-the-art machine learning 

models, which are a virtual representation of real 

word entities and processes, synchronized at a 

specified frequency and fidelity. It can track the  

past, provide insights into the present and predict  

and influence future behavior and can offer live, 

system level simulated predictions with real data 

inputs. It offers a unique opportunity to study virtual 

and physical systems either separately or together. 

Moreover, digital twins provide profound impacts on 

industrial product development where businesses 

can get better decision-making abilities through 

human and artificial intelligence by accelerating 

holistic understanding of the systems of interest.  

The technology applied here enables the ability to 

see products in action virtually, which allows engi-

neers faster interactions in the initial design phase.  

It further entitles true predictive maintenance digitally 

which drives down costly interruptions and repairs 

through accurate visualization of maintenance needs. 

Most importantly, digital twins uniquely offer critical 

solutions to avoid lost production time and costly 

investments. (Ansys, 2020) (Migliori, 2021) (M.A.N. 

DeAndrade, 2021) (T. Y. Lin, 2021).

Reduced Order Model (ROM)

Development of digital twins is dependent on a 

reduced order model (ROM). Model order reduction 

is a machine learning system to reduce the complexi-

ties of mathematical models in numerical solutions. 

Benefits of employing ROM are reduced simulation 

time, reduced storage size, and reusability of complex 

3D models. ROM can be classified as static and 

dynamic. Static ROM are mainly useful where the 

inlet parameters are fairly steady over time whereas 

dynamic ROM is useful in capturing the sensitivity of 

fluctuating unsteady inlet parameters. Development 

and deployment of specific ROM is dependent on 

type of applications. 

Static ROM 

Static ROM is mainly utilized for steady state applica-

tions and it generates parametric ROM for the field 

data governed by the following equation (Ansys, 

2020)

Where 

•	 X is the vector of target variable in sample size of M

•	 θ is the predictor 

•	 φm is the regression co-efficient

Dynamic ROM 

Dynamic ROM builder uses deep learning technique 

to build dynamic ROM for any transient simulation 

data. The governing equation is: (Ansys, 2020)

Where

•	 The solution vector X is a vector (function of time) 

of size noutput 

•	 B is a vector (function of time) of size nexcitation

•	 F is anon linear function of X and B

•	 X0 is a vector of size noutput, which represents the 

initial conditions of the solution

Figure 1 represents the different forms of ROM 

workflow and its development cycle. (Ansys, Ansys 

Twin Builder Getting Started: Static Rom Builder, 

2020).
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Figure 1. ROM creation workflow.

The current study is a pioneering effort in developing 

and deploying digital twin technology in AMC air 

filtration system. By studying a digital twin under 

actual filter conditions with real time input data, it  

was possible to see filters in action over time though  

its connected virtual representation. 

Moreover, deployment of a digital twin for an air 

filtration system enabled momentary true predictive 

performance evaluation as well as true predictive 

maintenance by its live FMEA tracking features. 

Further, through its unique feature of “Virtual Sen-

sors”, it was possible to conduct the live FMEA and 

RCA (root cause analysis) instantly, which helped to 

avoid costly downtime and repairs. The ability of 

instant performance prediction further empowers  

the clear understanding of filter replacement time –  

thereby bolstered the future filter optimization 

process. By implementing a digital twin, businesses 

can have significant cost and time saving techniques 

in developing a holistic plan of future smart filtration 

techniques. That said, the technology can be critical 

from the aspect of superior product development 

along with significant economic advantages. The 

objective is to provide real-time response and to 

predict product lifetime momentarily. 

METHODOLOGY
—
The digital twin technology employed here is based 

on a neural network machine learning method, which 

needs substantial amounts of data to train the model. 

The data can be derived from experimentation, but 

data can also be generated synthetically in the 

absence of test data. The current study considered  

a specific AMC pleated filter system that is utilized  

to remove ultra-low concentration (5 – 100 ppb) of 

AMC using adsorption technology. Due to long test 

times and resource consumption, it was difficult to 

obtain the required amount of test data to feed into 

the twin model development. A solution to this 

challenge was developed for the current effort by 

utilizing the power of CFD techniques to generate 

the necessary training data set synthetically. A 

baseline validated CFD model was first developed 

before using it to generate the training data. 

Baseline CFD model: A prerequisite for  
model-based digital twins

Initially, a CFD model of a pleated AMC filter was 

developed. Figure 2 shows a single layer, pleated  

filter with specific pleat numbers, pleat width, and 

pleat depth. Activated carbon was chosen as the 

adsorbent media. The amount of carbon is depen-

dent upon specific adsorbent media loading for any 

one application. Toluene was chosen as the organic 

contaminant in the flow path with initial upstream 

concentration of 1 parts per million (ppm), 100 parts 

per billion (ppb) and 10 ppb, respectively. Based on 

the pleat design, the flow of contaminated air was 

allowed to pass through the adsorbent filter media. 

Due to the symmetric nature of the filter geometry,  

a 2D representative CFD model was developed.
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Figure 2. Pleated filter geometry and CFD domain.

The goal was to adsorb AMC contaminants (toluene 

in this case) into the filter media and thereby to 

produce ultra-pure air. The flow was laminar, and  

the model was based on governing equations for 

mass, momentum, and energy balance for gas 

adsorption processes in a porous adsorbent bed (A. 

Chakraborty J. C., 2019). The model was developed 

and solved in a Finite Volume Method through ANSYS 

Fluent CFD software. The process was governed by 

the Linear Driving Force model. An adsorption 

isotherm and gas diffusion model (pore diffusion and 

film diffusion) were developed by User Defined 

Functions (UDF) and resolved using ANSYS Fluent 

solver. Based on experimental data, the Langmuir 

isotherm model was best suited in this application. 

The mesh and time step optimizations were per-

formed for each model to obtain the solution 

convergence. The models were utilized to predict 

and validate filter adsorption capacity for three 

different contaminations cases of 1,000 ppb, 100 

ppb, and 10 ppb (Figure 3) respectively. The plots 

exhibited the removal efficiencies (%) as a function  

of filter capacity (ppb-h). It was evident that the models 

were well compared to experimental data at all three 

concentrations, indicating the extent of the accuracy 

and robustness of the model in predicting filter 

performance, at even very low concentrations. 

Inlet air flow

Outlet air flow

Inflow

Outflow
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Figure 3. Base model validation.

CFD model utilization to generate training 
data for ROM creation

The digital twin model, in this effort, was developed 

over wide ranges of input parameters such as con- 

taminant concentration and air flow rate with a goal 

to predict filter lifetime, removal efficiencies and to 

enable live FMEA analysis. The contaminant concen-

tration was varied from 10 ppb to 100 ppb and the 

flow rate was varied from 0.4 m/s (78 cfm) to 3 m/s 

(591 cfm). Both the input variables resembled the real 

time fab conditions. 

The key step was to generate sufficient training data 

to develop ROM over the ranges of input variables 

stated above. To do so, as a first step, a detailed DOE 

(design of engineering) was performed in ANSYS 

workbench tool by altering contaminant concentra-

tions and flow rates, shown in Table 1. Based on DOE, 

20 specific CFD models were developed thereafter 

with distinct combination of concentrations and flow 

rates. The models were developed based on a 

validated baseline CFD model. The model outputs 

were able to generate sufficient training data.
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Table 1. DOE for process conditions for CFD models

Case
Contaminant 
concentration Flow rate Case

Contaminant 
concentration Flow rate

1 52.75 (ppb) 0.985 (m/s) 11 84.25 (ppb) 2.675 (m/s)

2 57.25 (ppb) 1.635 (m/s) 12 43.75 (ppb) 2.025 (m/s)

3 70.75 (ppb) 2.285 (m/s) 13 39.25 (ppb) 0.465 (m/s)

4 97.75 (ppb) 1.375 (m/s) 14 34.75 (ppb) 1.245 (m/s)

5 16.75 (ppb) 2.415 (m/s) 15 66.25 (ppb) 0.595 (m/s)

6 75.25 (ppb) 1.115 (m/s) 16 88.75 (ppb) 0.725 (m/s)

7 61.75 (ppb) 2.935 (m/s) 17 30.25 (ppb) 2.805 (m/s)

8 79.75 (ppb) 1.765 (m/s) 18 12.25 (ppb) 1.505 (m/s)

9 48.25 (ppb) 2.545 (m/s) 19 93.25 (ppb) 2.155 (m/s)

10 21.25 (ppb) 0.855 (m/s) 20 25.75 (ppb) 1.895 (m/s)

Development of virtual sensors

Key features of digital twin were to offer predictive 

and prescriptive maintenance and troubleshooting of 

a live, in-service product, i.e. AMC filter in this study. 

This can be accomplished by generating multiple 

virtual sensors which can be mounted anywhere in 

the filter. Capability in developing virtual sensors is a 

state-of-the-art feature of a twin model. By embody-

ing the unrestricted virtual sensors, for the first time, 

it is possible to track any irregularities or potential 

flaws in a live system which can’t be obtained by 

physical sensors due to the limitation of mounting  

it elsewhere in the system. Figure 4 indicates the 

development of virtual sensors in an AMC filter.  

The purpose of the sensors was to capture the local 

contaminant concentration and flow rate which are 

critical parameters in filter design. For example, the 

toluene adsorption over time is shown in Figure 4b. 

The model predicted the filter adsorption perfor-

mance in ideal condition – however, in real life, the 

local concentration can vary at different locations of 

the filter which might have serious impact on filter 

performance. The virtual sensors (Figure 4a) were 

able to track the anomaly of the performance (if any) 

and can prescribe the much-needed solutions. 

To generate the sensors, initially 72 points were 

chosen at different pleat locations of the filter (top, 

middle and bottom). Next, a transient CFD model was 

developed to understand the flow and concentration 

profiles at 72 specific points. The purpose was to 

disregard the multiple redundant points with mini-

mum concentration and velocity changes. Results 

indicated that 72 sensor points can be reduced to 16 

where the values can be changed significantly. The  

16 virtual sensors were able to translate the local 

physical behavior of the entire filter. Next step was to 

develop ROM which included 16 virtual sensors and 

filter outlet point to predict the filter performances 

and to conduct live FMEA analysis. 
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Figure 4. Development of virtual sensors in an AMC filter and toluene adsorption (in kg/kg).

DIGITAL TWIN MODEL DEVELOPMENT
—
Development and deployment of digital twin can 

provide critical insights to real-life in-service products 

and directions to new design specification by offering 

the following key benefits:

a.	Live system level simulation with real inputs

b.	Momentary prediction of removal efficiency and 

pollutant concentration 

c.	Enable predictive and prescriptive maintenance

d.	Live FMEA analysis by virtual sensor deployment

e.	Operational optimization of air quality

Figure 5 indicated the usual over all workflow to 

develop the twin model. The input parameters were 

inlet contaminant concentration and air flow rates, 

and the goal was to predict filter lifetime and removal 

efficiencies instantly. Phase 1 involved creation of 

static ROM and subsequent response surface 

function. 

A dynamic ROM was developed in Phase 2. Phase 3 

and Phase 4 corresponded development of subse-

quent offline and online twin respectively. Offline 

twin was useful for momentary prediction of filter 

lifetime as well as filter performance over time 

whereas online connected twin is mainly used to 

capture live filter performance over time with a goal  

to develop live FMEA solution. 

  

Figure 5. ROM creation workflow.
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Digital twins can be developed from either static or dynamic ROMs, depending 

on the process. Figure 6 further indicates the complete structure in which an 

operational filter can be connected to twin systems by internal network or IoT 

connections. Based on life inputs, the twin is able to predict filter life cycle and 

pollutant removal efficiency Instantly and provide continuous live FMEA by 

newly developed virtual sensors.

Figure 6. Digital twin structure coupled with filter in operation.

Static ROM development 

Static ROM was developed based on the synthetic training data generated by  

20 CFD model runs based on 20 different combinations of inlet concentrations 

and air flow rates as shown in Table 1. ANSYS Twin Builder tool was used to 

develop static ROM. The workflow of generation of static ROM was as follows:

Training data generation

Synthetic training data was generated by 20 CFD filter model runs. 80% of the 

training data was used as learning data and the rest was used as validation data. 

Learning the ROM

The learning of the ROM was facilitated with data. Figure 7 indicates the snap-

shot of the ROM learning process by ANSYS Twin Builder. The figure indicates 

the model reduction by optimal number of modes of ROM (6 in this case). 

Once the ROM was learned, the data were passed to the validation part.

Figure 7. Learning process of ROM.
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Validating the ROM

ROM validation was critical for accurate predictions. 

As stated earlier, 20% of simulated training data were 

used as validation data and the learned ROM data 

were compared with the specific validation part. The 

ROM was continuously trained unless it compared 

well with the validation data. The validated ROM was 

then transferred to the Twin builder module.

Dynamic ROM development

Dynamic ROM is applicable when the input parame-

ters fluctuate significantly. A dynamic ROM can 

capture fluctuations and sensitivities of inlet parame-

ters. Dynamic ROM generation workflow resembles 

that of static ROM as explained above: training data 

generation, learning and validating the ROM. Figure 8 

shows the workflow of dynamic ROM generation.

Figure 8. Dynamic ROM generation flow.

RESULTS
—

Predictions of a digital twin generated  
by static ROM

Figure 9 shows the filter replacement time and virtual 

sensor data analysis, which were predicted by the 

static ROM. Results indicate that the ROM accurately 

predicted the filter lifetime for 20 design of experi-

ment cases (Figure 9a), each of which was a unique 

combination of inlet contaminant concentration and 

air flow rate. 

Figure 9. Filter replacement time (a) and virtual sensor prediction (b).

Instant prediction of filter lifetime is critical and 

valuable information for the next generation of filter 

design and is a significant cost saving approach 

which eliminates costly experimentation and long 

test time. Further, Figure 9b shows the local concen-

tration profiles at different pleat locations by virtual 

sensors. This unique performance indicator was able 

to capture anomalies of filter performance  

at any filter location. Therefore, it was possible to 

perform FMEA analysis of a live in-service product 

digitally. This analysis can offer preventive measures 

and maintenance, which potentially reduces costly 

production downtime. 
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Predictions of a digital twin generated  
by dynamic ROM

Dynamic ROMs are especially critical for predicting 

fluctuating inlet parameters. Figure 10 showed the 

unsteady and fluctuating inlet concentration data in 

both Figure 10a (10 ppb) and Figure 10b (100 ppb) 

scenarios, respectively. A digital twin, generated by 

dynamic ROM, was able to predict filter removal 

efficiency momentarily and eliminated costly and 

time-consuming experimentation. Figure 11 further 

exhibits model validation and local contaminant 

concentration profiles predicted by virtual sensors. 

The twin model was able to predict toluene break-

through at the filter outlet for both cases (10 ppb and 

100 ppb) and compared well to that derived from the 

previous CFD model. Further, virtual sensors were 

able to predict local concentration profiles at 

different filter locations. 

Figure 10. Fluctuating inlet contaminant concentration for 10 ppb (a) and 100 ppb (b).

Figure 11. Dynamic ROM model validation.
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Digital Twin Development for an  
Air Filtration System

After developing a digital twin model, the next step 

was to deploy it for a real-life system. Deployment  

of the twin carries a high significance in improving, 

managing, and troubleshooting a complex live, in- 

service product. This technology offers significant 

cost and time savings opportunities by attributing key 

product information. The current study demonstrated  

a successful twin deployment in an AMC air filtration 

system. It offered crucial process and product 

information by instant performance prediction and 

product monitoring by live FMEA analysis. 

Figure 12 shows the full process flow of the twin 

deployment in a real-life, physical AMC air filtration 

system. Air flow was allowed to enter from the top of  

a wind tunnel system in which AMC test filters were 

placed. The contaminant (toluene in this case) was 

injected into the air flow. Two tests were performed 

with different toluene contaminants of 50 ppb and 

100 ppb, respectively. The inlet and outlet airflows 

from the filter with measured contaminants were 

allowed to pass through an auto sampler and then  

to a pre-concentrator. The pre-concentrator increases 

contaminant concentration but reduces its volume, 

which increases signal to noise ratio and reduces 

detection limits. 

The samples were analyzed by a gas chromatograph 

with flame ionization detector (GV-FID). The  GC-FID 

provides the sample signal as an analog current at the 

pico-amp level. This was converted to a digital signal. 

A calibration curve (from traceable gas standards) was 

used to convert the digital signal of into a contami-

nant concentration with ppb unit. The converted 

digital signal was then passed into the twin system, 

which was deployed by the ANSYS Twin Deployer 

tool as a functional mockup unit (FMU).

Figure 12. Process flow of twin deployment.
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Figure 13 shows the experimental inlet and outlet 

concentrations for 50 and 100 ppb cases, respectively. 

The unsteady and fluctuating nature of inlet concen-

trations (Figure 13a) necessitated the generation of a 

dynamic ROM. Figure 13b shows the breakthrough 

curve at the outlet of the filter of subsequent cases. 

The twin was developed based on the dynamic ROM. 

The ROM was trained for a contaminant concentra-

tion range of 10 ppb to 100 ppb. The goal was to 

validate the filter removal efficiency and adsorption 

breakthrough for 50 ppb and 100 ppb inlet concen-

trations, derived from the twin with that derived from 

experiment. 

Figure 13. Experimental inlet and outlet concentrations. 
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For the validation part, a desktop WebApp was 

developed to capture all possible outcomes from 

twin models (prediction / maintenance) as shown  

in Fig. 14. The figure shows a few snapshots of 

different concentration cases (50 and 100 ppb).  

The twin model was embedded in a WebApp and  

the process was integrated by the ANSYS Twin 

Deployer tool. Both online and offline twins were 

developed. The online twin was used to monitor  

filter performance over time and to enable live  

FMEA analysis. 

The offline twin was employed to predict the filter 

removal efficiency/adsorption breakthrough at filter 

outlet. The WebApp accurately captured the inlet 

sensor data, i.e. test data at 50 and 100 ppb inlet 

concentrations. Figure 14 further shows the accurate 

validation from sensor (test) and twin model. 

The figure indicates that the breakthrough curve from 

the twin model followed the experimental data very 

well, but in a significantly shorter time scale. The twin 

model was able to generate the data almost instantly 

(by 10 – 15 seconds), compared to experimental test 

times of 6 – 8 weeks. This implies that the generated 

twin was able to predict filter performance and 

removal efficiencies instantly for any inlet contami-

nant concentration in the range of 10 to 100 ppb. 

Instant prediction capability of a twin carries para-

mount importance in investigating a live process by 

eliminating costly and lengthy experimentation. It 

further offers significant values for product develop-

ment by speeding it up.

Figure 14. Twin validation from WebApp.

a) Case with 100 ppb inlet concentration b) Case with 50 ppb inlet concentration
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SUMMARY
—
The digital twin unlocked a unique potential to 

transform product maintenance, repair, and perfor-

mance predictions for every industrial domain where 

product optimization is difficult or impossible to 

predict by traditional measures. However, even with 

obvious prospects of having high economic impact, 

the technology is still far from being used in most 

product implementations due to lack of investment 

or strategy. Twin model technology is still in develop-

ment and not yet widely adopted.

Among the successful implementations, the current 

study is an effort to develop and deploy digital twin 

technology in the filtration industry. It can comple-

ment the shortfalls of previous model based/experi-

mental approaches through its ability to predict filter 

life cycles momentarily, live FMEA analysis. This offers 

optimization of filter performance and operational 

cost of ownership. 

By studying the digital twin of AMC filters under 

actual working conditions, we explored the product 

in action, over time, when subjected to the physical 

environment. This allows the product development 

team to close the loop on its initial simulations. 

Engineers can make more informed choices for 

future designs and make their simulations even  

more accurate.
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